A survey of 120 coffee farmers in the Portland watershed revealed that they lacked training in pesticide application, and had no concept of the transport of residues in the environment and their impact on non-target organisms.
Residues of organochlorine (OC) and organophosphorous compounds (OP) were monitored monthly for over a year in plantation soil, and water, sediment and fauna of three rivers and coastal waters of Portland watershed by gas chromatography. OP residues were not detected in any sample while OC residues were below detection levels in Rio Grande. The mean concentration ± standard error of residues detected in water (μg L_1), sediment (ng g_1) and fauna (ng g_1 in wet weight) were: α-endosulfan 2.7 ± 1.29, 3.8 ± 0.15 and 15.9 ± 1.61, respectively, in Spanish River, 1.56 ± 0.43, 24.3 ± 16.44 and 9.0 ± 1.86, respectively, in Swift River; 0.40 ± 0.02, 1.77 ± 0.68 ± 12.63, respectively, in sea coast; β-endosulfan, 1.2 ± 0.48, 0 and 8.1 ± 1.99, respectively, in Spanish River, 1.9 ± 0.49, 0.75 ± 0.32 and 11. ± 4.32, respectively, in Swift River; 0, 5.1 ± 0.30 and 30.9 ± 15.96, respectively, in sea coast; endosulfan sulphate, 0.12 ± 0.12, 4.8 ± 1.62 and 10.0 ± 2.02, respectively, in Spanish River, 3.6 ± 0.95, 3.1 ± 0.56 and 7.9 ± 1.29, respectively, in Swift River and 0, 3.9 ± 2.17 and 24.0 ± 14.67, respectively, in sea coast.
Dieldrin residues were detected only once in water (0.2 ± 0.03) and sediment (0.02 ± 0.003) of Spanish River, water (0.76 ± 0.09) of Swift River and sediment (0.1 ± 0.005) of sea coast; pp′ DDE was found twice in water (3.1 ± 1.53) and sediment (0.1 ± 0.007) of Swift River and water (0.8 ± 0.22) and sediment (6.14 ± 0.41) of sea coast. Arochlor was detected only twice (0.011 and 0.153) in water of Spanish River.