Acoustic cavitation is the formation and collapse of bubbles in liquid irradiated by intense ultrasound. The speed of the bubble collapse sometimes reaches the sound velocity in the liquid. Accordingly, the bubble collapse becomes a quasi-adiabatic process. The temperature and pressure inside a bubble increase to thousands of Kelvin and thousands of bars, respectively. As a result, water vapor and oxygen, if present, are dissociated inside a bubble and oxidants such as OH, O, and H2O2 are produced, which is called sonochemical reactions. The pulsation of active bubbles is intrinsically nonlinear. In the present review, fundamentals of acoustic cavitation, sonochemistry, and acoustic fields in sonochemical reactors have been discussed.