Showing 1 to 10 of 35 matching Articles
Results per page:
Export (CSV)
By
Shim, David J; Yang, Li; Reed, J Graham; Noebels, Jeffrey L; Chiao, Paul J; Zheng, Hui
Show all (6)
9 Citations
Background
Though originally discovered in the immune system as an important mediator of inflammation, NF-κB has recently been shown to play key roles in the central nervous system, such as synaptogenesis, synaptic plasticity, and cognition. NF-κB activity is normally tightly regulated by its primary inhibitor, IκBα, through a unique autoinhibitory loop. In this study, we tested the hypothesis that the IκBα autoinhibitory loop ensures optimal levels of NF-κB activity to promote proper brain development and function. To do so, we utilized knock-in mice which possess mutations in the IκBα promoter to disrupt the autoinhibitory loop (IκBαM/M KI mice).
Results
Here, we show that these mutations delay IκBα resynthesis and enhance NF-κB activation in neurons following acute activating stimuli. This leads to improved cognitive ability on tests of hippocampal-dependent learning and memory but no change in hippocampal synaptic plasticity. Instead, hippocampal neurons from IκBαM/M KI mice form more excitatory and less inhibitory synapses in dissociated cultures and are hyperexcitable. This leads to increased burst firing of action potentials and the development of abnormal hypersynchronous discharges in vivo.
Conclusions
These results demonstrate that the IκBα autoinhibitory loop is critical for titrating appropriate levels of endogenous NF-κB activity to maintain proper neuronal function.
more …
Nature Genetics (2019-05-01) 51: 844-856
, May 01, 2019
By
Xu, Qianhua; Xiang, Yunlong; Wang, Qiujun; Wang, Leyun; Brind’Amour, Julie; Bogutz, Aaron Blair; Zhang, Yu; Zhang, Bingjie; Yu, Guang; Xia, Weikun; Du, Zhenhai; Huang, Chunyi; Ma, Jing; Zheng, Hui; Li, Yuanyuan; Liu, Chao; Walker, Cheryl Lyn; Jonasch, Eric; Lefebvre, Louis
; Wu, Min
; Lorincz, Matthew C.
; Li, Wei
; Li, Li
; Xie, Wei
Show all (24)
8 Citations
The oocyte epigenome plays critical roles in mammalian gametogenesis and embryogenesis. Yet, how it is established remains elusive. Here, we report that histone-lysine N-methyltransferase SETD2, an H3K36me3 methyltransferase, is a crucial regulator of the mouse oocyte epigenome. Deficiency in Setd2 leads to extensive alterations of the oocyte epigenome, including the loss of H3K36me3, failure in establishing the correct DNA methylome, invasion of H3K4me3 and H3K27me3 into former H3K36me3 territories and aberrant acquisition of H3K4me3 at imprinting control regions instead of DNA methylation. Importantly, maternal depletion of SETD2 results in oocyte maturation defects and subsequent one-cell arrest after fertilization. The preimplantation arrest is mainly due to a maternal cytosolic defect, since it can be largely rescued by normal oocyte cytosol. However, chromatin defects, including aberrant imprinting, persist in these embryos, leading to embryonic lethality after implantation. Thus, these data identify SETD2 as a crucial player in establishing the maternal epigenome that in turn controls embryonic development.
more …
By
Liang, Fanrong; Ma, Tingting; Huang, Wenjing; Wu, Xi; Li, Ying; Ren, Yulan; Zheng, Hui; Fang, Li; Yang, Jie; Liu, Mailan; Lan, Lei
Show all (11)
As an ancient empirical medicine, acupuncture has profound theory basis and extensive clinical application. With the popularity of evidence-based medicine (EBM), rigorous challenges have been brought to acupuncture: (1) How to translate the tremendous source of evidence into an optimal treatment schema in clinical practice? (2) How to integrate the theory and methodology of the empirical medicine with that of EBM into a theory and methodology which will benefit the development of acupuncture? The aim of this chapter is to encourage reflection on the combination of the theory and methodology of EBM with the features of acupuncture so as to guide acupuncture clinical practice, health policy, and scientific research.
more …
By
Vassar, Robert; Zheng, Hui
1 Citations
The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington’s disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.
more …
By
Zheng, Hui; Koo, Edward H
179 Citations
The amyloid precursor protein (APP) takes a central position in Alzheimer's disease (AD) pathogenesis: APP processing generates the β-amyloid (Aβ) peptides, which are deposited as the amyloid plaques in brains of AD individuals; Point mutations and duplications of APP are causal for a subset of early onset of familial Alzheimer's disease (FAD). Not surprisingly, the production and pathogenic effect of Aβ has been the central focus in AD field. Nevertheless, the biological properties of APP have also been the subject of intense investigation since its identification nearly 20 years ago as it demonstrates a number of interesting putative physiological roles. Several attractive models of APP function have been put forward recently based on in vitro biochemical studies. Genetic analyses of gain- and loss-of-function mutants in Drosophila and mouse have also revealed important insights into its biological activities in vivo. This article will review the current understanding of APP physiological functions.
more …
By
Liu, HaiDan; Zheng, Hui; Duan, Zhi; Hu, DuoSha; Li, Ming; Liu, SuFang; Li, ZiJian; Deng, XiYun; Wang, ZhenLian; Tang, Min; Shi, Ying; Yi, Wei; Cao, Ya
Show all (13)
25 Citations
Background
Expression of kappa gene is under the control of distinct cis-regulatory elements, including the kappa intron enhancer (iEκ) and the kappa 3' enhancer (3'Eκ). The active enhancers and expression of immunoglobulin is generally considered to be restricted to B lymphocytes. However, accumulating evidence indicated that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cell lines, express immunoglobulins. The mechanisms underlying the expression of Igs in nonlymphoid cells remain unknown. On the basis of our previous finding that expression of kappa light chain in NPC cells can be upregulated by EBV-encoded latent membrane protein 1(LMP1) through the activation of NF-κB and AP-1 signaling pathways, we thus use NPC cells as model to further explore the molecular mechanisms of nonlymphoid cells expressing Ig kappa.
Results
In this study, luciferase reporter plasmid containing human wild-type iEκ, and its derivative plasmids containing mutant binding sites for transcription factor NF-κB or AP-1 were constructed. Luciferase reporter assays demonstrate iEκ is active in Igκ-expressing NPC cells and LMP1 expression can upregulate the activity of iEκ in NPC cells. Mutation of the NF-κB or AP-1 site within and downstream the iEκ, inhibition of the NF-κB and AP-1 pathways by their respective chemical inhibitor Bay11-7082 and SP600125 as well as stable or transient expression of dominant-negative mutant of IκBα (DNMIκBα) or of c-Jun (TAM67) indicate that both sites are functional and LMP1-enhanced iEκ activity is partly regulated by these two sites. Gel shift assays show that LMP1 promotes NF-κB subunits p52 and p65 as well as AP-1 family members c-Jun and c-Fos binding to the κNF-κB and the κAP-1 motifs in vitro, respectively. Both chemical inhibitors and dominant negative mutants targeting for NF-κB and AP-1 pathways can attenuate the LMP1-enhanced bindings. Co-IP assays using nuclear extracts from HNE2-LMP1 cells reveal that p52 and p65, c-Jun and c-Fos proteins interact with each other at endogenous levels. ChIP assays further demonstrate p52 and p65 binding to the κB motif as well as c-Jun and c-Fos binding to the AP-1 motif of Ig kappa gene in vivo.
Conclusion
These results suggest that human iEκ is active in Igκ-expressing NPC cells and LMP1-stimulated NF-κB and AP-1 activation results in an augmenting activation of the iEκ. LMP1 promotes the interactions of heterodimeric NF-κB (p52/p65) and heterodimeric AP-1 (c-Jun/c-Fos) transcription factors with the human iEκ enhancer region are important for the upregulation of kappa light chain in LMP1-positive nasopharyngeal carcinoma cells.
more …
By
Xu, Yin; Martini-Stoica, Heidi; Zheng, Hui
6 Citations
Background
Tauopathy is characterized by neurofibrillary tangles composed of insoluble hyperphosphorylated tau protein. Currently, cellular models that mimic neurofibrillary tangles in vitro are lacking. Previous studies indicate that neurofibrillary tangles form via a prion replication mechanism. In the present work, we establish a seeding based cellular model according to the prion hypothesis.
Results
We show that cellular soluble tau can be converted to insoluble tau by seeds from the brain lysate of rTg4510 mice or synthetically generated preformed tau fibrils (PFFs). The cellular insoluble tau exhibits classic features of neurofibrillary tangles. Using genetic and pharmacological methods, we demonstrate that inhibition of autophagy increases whereas enhancement of autophagy reduces insoluble tau in our seeding based cellular model. The insoluble tau can be detected and quantified by thioflavin-S staining, thus allowing us to adapt our cellular model to a high-content image-based screening platform.
Conclusions
Our seeding based cellular model reproduces neurofibrillary tangle pathology in vitro and serves as a useful tool for studying tauopathy and identifying tau modulators.
more …
By
Zheng, Hui; Liu, Juan; Zhang, Pengfei
5 Citations
A simple synthetic route was developed to prepare novel fluoroquinolone derivatives from amino acid salts. A facile route preparing the quinolone intermediates in one pot was explored which can facilitate the industrial operation. A series of new compounds were prepared conveniently and characterized by IR, 1H NMR, MS, and elemental analysis. The preliminary bioassays results revealed that they have certain antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, and Aspergillus fumigatus.
more …
By
Shen, Hongtao; Zhu, Haichuan; Song, Mowei; Tian, Yonglu; Huang, Yafei; Zheng, Hui; Cao, Ruiyuan; Lin, Jian; Bi, Zhenggang; Zhong, Wu
Show all (10)
8 Citations
Background
The 90-kDa heat shock protein HSP90AA1 is critical for the stability of several proteins that are important for tumor progression and thus, is a promising target for cancer therapy. Selenosemicarbazone metal complexes have been shown to possess anticancer activity through an unknown molecular mechanism.
Methods
The MTT assay, fluorescence-activated cell sorting, and fluorescent microscopy were used to analyze the mechanism of the anti-cancer activity of the selenosemicarbazone metal complexes. Additionally, RNA-seq was applied to identify transcriptional gene changes, and in turn, the signaling pathways involved in the process of 2-24a/Cu-induced cell death. Last, the expression of HSP90AA1, HSPA1A, PIM1, and AKT proteins in 2-24a/Cu-treated cells were investigated by western blot analysis.
Results
A novel selenosemicarbazone copper complex (2-24a/Cu) efficiently induced G2/M arrest and was cytotoxic in cancer cells. 2-24a/Cu significantly induced oxidative stress in cancer cells. Interestingly, although RNA-seq revealed that the transcription of HSP90AA1 was increased in 2-24a/Cu-treated cells, western blotting showed that the expression of HSP90AA1 protein was significantly decreased in these cells. Furthermore, down-regulation of HSP90AA1 led to the degradation of its client proteins (PIM1 and AKT1), which are also cancer therapy targets.
Conclusion
Our results showed that 2-24a/Cu efficiently generates oxidative stress and down-regulates HSP90AA1 and its client proteins (PIM1, AKT1) in U2os and HeLa cells. These results demonstrate the potential application of this novel copper complex in cancer therapy.
more …
Experimental & Molecular Medicine (2017-09-01) 49: e377
, September 01, 2017
By
Zheng, Hui; Qiao, Chunping; Tang, Ruhang; Li, Jianbin; Bulaklak, Karen; Huang, Zhenhua; Zhao, Chunxia; Dai, Yi; Li, Juan; Xiao, Xiao
Show all (10)
7 Citations
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.
more …
-