Showing 1 to 9 of 9 matching Articles
Results per page:
Export (CSV)
By
Komazaki, S.; Ikemoto, Takaaki; Takeshima, Hiroshi; Iino, Masamitsu; Endo, Makoto; Nakamura, Hiroaki
Show all (6)
Post to Citeulike
9 Citations
Abstract.
Ryanodine receptors (RyRs), which form Ca2+ channels in the membrane of the endoplasmic reticulum, consist of three subtypes (RyR1, RyR2, and RyR3). The RyRs release Ca2+ from the endoplasmic reticulum into the cytoplasm and thus play an important role, especially in the contraction of skeletal and cardiac muscle cells. The genes of these RyRs are also expressed in many non-muscle tissues, but the role played by RyRs in non-muscle cells is not fully understood. In the present study, we examined the morphological changes in such cells caused by a deficiency of RyRs genes using three mutant mice lacking RyR1, RyR3, or both RyR1 and RyR3. The results showed morphological abnormalities in the adrenal cortical cells in all three mutant mice. In addition, an excessive accumulation of glycogen granules in hepatic cells, and a hypertrophy of the liver were both present in those mutant mice lacking both RyR1 and RyR3. We discuss the relationship between the morphological abnormalities of the adrenal cortex and liver induced by a deficiency of RyRs, and the possible causes of these abnormalities.
more …
By
Venturi, Elisa; Matyjaszkiewicz, Antoni; Pitt, Samantha J.; Tsaneva-Atanasova, Krasimira; Nishi, Miyuki; Yamazaki, Daiju; Takeshima, Hiroshi; Sitsapesan, Rebecca
Show all (8)
Post to Citeulike
12 Citations
Sarcoplasmic/endoplasmic reticulum (SR) and nuclear membranes contain two related cation channels named TRIC-A and TRIC-B. In many tissues, both subtypes are co-expressed, making it impossible to distinguish the distinct single-channel properties of each subtype. We therefore incorporated skeletal muscle SR vesicles derived from Tric-a-knockout mice into bilayers in order to characterise the biophysical properties of native TRIC-B without possible misclassification of the channels as TRIC-A, and without potential distortion of functional properties by detergent purification protocols. The native TRIC-B channels were ideally selective for cations. In symmetrical 210 mM K+, the maximum (full) open channel level (199 pS) was equivalent to that observed when wild-type SR vesicles were incorporated into bilayers. Analysis of TRIC-B gating revealed complex and variable behaviour. Four main sub-conductance levels were observed at approximately 80 % (161 pS), 60 % (123 pS), 46 % (93 pS), and 30 % (60 pS) of the full open state. Seventy-five percent of the channels were voltage sensitive with Po being markedly reduced at negative holding potentials. The frequent, rapid transitions between TRIC-B sub-conductance states prevented development of reliable gating models using conventional single-channel analysis. Instead, we used mean-variance plots to highlight key features of TRIC-B gating in a more accurate and visually useful manner. Our study provides the first biophysical characterisation of native TRIC-B channels and indicates that this channel would be suited to provide counter current in response to Ca2+ release from the SR. Further experiments are required to distinguish the distinct functional properties of TRIC-A and TRIC-B and understand their individual but complementary physiological roles.
more …
By
Li, Xiao-Qiang; Zheng, Yun-Min; Rathore, Rakesh; Ma, Jianjie; Takeshima, Hiroshi; Wang, Yong-Xiao
Show all (6)
Post to Citeulike
24 Citations
Ryanodine receptor 1 (RyR1) is well-known to be expressed in systemic and pulmonary vascular smooth muscle cells (SMCs); however, its functional roles remain largely unknown. In the present study, we attempted to determine the potential importance of RyR1 in membrane depolarization-, neurotransmitter-, and hypoxia-induced Ca2+ release and contraction in pulmonary artery SMCs (PASMCs) using RyR1 homozygous and heterozygous gene deletion (RyR1−/− and RyR1+/−) mice. Our results indicate that spontaneous local Ca2+ release and caffeine-induced global Ca2+ release are significantly reduced in embryonic RyR1−/− and adult RyR+/− cells. An increase in [Ca2+]i following membrane depolarization with high K+ is markedly attenuated in RyR1−/− and RyR1+/− PASMCs in normal Ca2+ or Ca2+-free extracellular solution. Similarly, muscle contraction evoked by membrane depolarization is reduced in RyR1+/− pulmonary arteries in the presence or absence of extracellular Ca2+. Neurotransmitter receptor agonists and inositol 1,4,5-triphosphate elicit a much smaller increase in [Ca2+]i in both RyR1−/− and RyR1+/− cells. We have also found that neurotransmitter-evoked muscle contraction is significantly inhibited in RyR1+/− pulmonary arteries. Hypoxia-induced increase in [Ca2+]i and contraction are largely blocked in RyR1−/− and/or RyR1+/− PASMCs. Collectively, our findings provide genetic evidence for the functional importance of RyR1 in spontaneous local Ca2+ release, and membrane depolarization-, neurotransmitter-, as well as hypoxia-induced global Ca2+ release and attendant contraction in PASMCs.
more …
By
Moriguchi, Shigeki; Nishi, Miyuki; Sasaki, Yuzuru; Takeshima, Hiroshi; Fukunaga, Kohji
Show all (5)
Post to Citeulike
1 Citations
Junctophilins (JPs) expressed in the endoplasmic/sarcoplasmic reticulum (ER/SR) interact with the plasma membrane, thereby constructing junctional membrane complexes (JMC). We here reported that double-knockout mice lacking both JP3 and JP4 (JP-DKO mice) exhibit aberrant synaptic plasticity in the corticostriatal circuits and irregular methamphetamine (METH)-induced behavioral sensitization when METH (1.0 mg/kg) was administrated six consecutive days and assessed the striatal glutamatergic population spike (PS) by stimulation of cortical white matter. When we assessed the striatal PS by stimulation of cortical white matter, the long-term depression (LTD) was observed in JP-DKO mouse striatum similar to that in control (JP-double hetero mice (JP-DHE mice)). Importantly, LTD converted to long-term potentiation (LTP) following chronic METH treatment concomitant with behavioral sensitization in JP-DHE mice. LTD in JP-DKO mice, however failed to convert to LTP with lacks of behavioral sensitization. LTP impairment in JP-DKO mice was restored by pretreatment with FK506, calcineurin (CaN) inhibitor, but not with apamin, SK channel inhibitor. In immunoblotting analyses, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation was significantly increased following METH treatment in the striatum of JP-DHE mice. However, CaMKII autophosphorylation did not changed by METH treatment in the striatum of JP-DKO mouse. The increased CaMKII autophosphorylation was closely associated with elevated CaN activity in JP-DKO mice. The lack of increased CaMKII activity in JP-DKO mice was correlated with the impaired METH-induced behavioral sensitization. Thus, elevated CaN and aberrant CaMKII activities in the striatum of JP-DKO mice likely accounts for lack of METH-induced behavioral sensitization.
more …
By
Saito, Shin-Ya; Takeshima, Hiroshi
Post to Citeulike
11 Citations
Notch signaling plays an important role in the process of cell-fate assignation during nervous system development. DNER is a neuron-specific transmembrane protein carrying extracellular EGF-like repeats and is expressed in somatodendritic regions.In vitro studies demonstrated that DNER mediates Notch signaling by cell-cell interaction. In the cerebellum, DNER is abundantly expressed in Purkinje cells and moderately in granule cells. DNER-knockout mice showed motor discoordination. The mutant cerebellum showed morphological impairments of Bergmann glia and multiple innervation between climbing fibers and Purkinje cells. Moreover, glutamate clearance at the synapses between parallel fibers and Purkinje cells was significantly weakened, and the expression of GLAST, a glutamate transporter in Bergmann glia, was reduced in the mutant cerebellum. Therefore, DNER contributes to the morphological and functional maturation of Bergmann glia via the Notch signaling pathway, and is essential for precise cerebellar development.
more …
By
Venturi, Elisa; Sitsapesan, Rebecca; Yamazaki, Daiju; Takeshima, Hiroshi
Show all (4)
Post to Citeulike
21 Citations
Trimeric intracellular cation-selective (TRIC) channel subtypes, namely TRIC-A and TRIC-B, are derived from distinct genes and distributed throughout the sarco/endoplasmic reticulum (SR/ER) and nuclear membranes. TRIC-A is preferentially expressed at high levels in excitable tissues, while TRIC-B is ubiquitously detected at relatively low levels in various tissues. TRIC channels are composed of ~300 amino acid residues and contain three putative membrane-spanning segments to form a bullet-shaped homo-trimeric assembly. Both native and purified recombinant TRIC subtypes form functional monovalent cation-selective channels in a lipid bilayer reconstitution system. The electrophysiological data indicate that TRIC channels behave as K+ channels under intracellular conditions, although the detailed channel characteristics remain to be investigated. The pathophysiological defects detected in knockout mice suggest that TRIC channels support SR/ER Ca2+ release mediated by ryanodine (RyR) and inositol trisphosphate receptor (IP3R) channels. For example, Tric-a-knockout mice develop hypertension resulting from vascular hypertonicity, and the mutant vascular smooth muscle cells exhibit insufficient RyR-mediated Ca2+ release for inducing hyperpolarization. Tric-b-knockout mice show respiratory failure at birth, and IP3R-mediated Ca2+ release essential for surfactant handling is impaired in the mutant alveolar epithelial cells. Moreover, double-knockout mice lacking both TRIC subtypes show embryonic heart failure, and SR Ca2+ handling is deranged in the mutant cardiomyocytes. Current evidence strongly suggests that TRIC channels mediate counter-K+ movements, in part, to facilitate physiological Ca2+ release from intracellular stores.
more …
By
Matsuki, Katsuhito; Takemoto, Masashi; Suzuki, Yoshiaki; Yamamura, Hisao; Ohya, Susumu; Takeshima, Hiroshi; Imaizumi, Yuji
Show all (7)
Post to Citeulike
2 Citations
Ryanodine receptor type 3 (RyR3) is expressed in myometrial smooth muscle cells (MSMCs). The short isoform of RyR3 is a dominant negative variant (DN-RyR3) and negatively regulates the functions of RyR2 and full-length (FL)-RyR3. DN-RyR3 has been suggested to function as a major RyR3 isoform in non-pregnant (NP) mouse MSMCs, and FL-RyR3 may also be upregulated during pregnancy (P). This increase in the FL-RyR3/DN-RyR3 ratio may contribute to the strong contractions by MSMCs for parturition. In the present study, spontaneous contractions by the myometrium in NP and P mice were highly susceptible to nifedipine but were not affected by ryanodine. Ca2+ image analyses under a voltage clamp revealed that the influx of Ca2+ through voltage-dependent Ca2+ channels did not cause the release of Ca2+ from the sarcoplasmic reticulum (SR). Cytosolic Ca2+ concentrations ([Ca2+]cyt) in MSMCs were not affected by caffeine. Despite the abundant expression of large conductance Ca2+-activated K+ channels in MSMCs, spontaneous transient outward currents were not observed in the resting state because of the substantive lack of Ca2+ sparks. Quantitative PCR and Western blot analyses indicated that DN-RyR3 was strongly expressed in the NP myometrium, while the expression of FL-RyR3 and DN-RyR3 was markedly reduced in the P myometrium. The messenger RNA (mRNA) expression of RyR2 and RyR1 was negligible in the NP and P myometria. Moreover, RyR3 knockout mice may become pregnant and deliver normally. Thus, we concluded that none of the RyR subtypes, including RyR3, play a significant role in the regulation of [Ca2+]cyt in or contractions by mouse MSMCs regardless of pregnancy.
more …
By
Pigoni, Martina; Wanngren, Johanna; Kuhn, Peer-Hendrik; Munro, Kathryn M.; Gunnersen, Jenny M.; Takeshima, Hiroshi; Feederle, Regina; Voytyuk, Iryna; De Strooper, Bart; Levasseur, Mikail D.; Hrupka, Brian J.; Müller, Stephan A.; Lichtenthaler, Stefan F.
Show all (13)
Post to Citeulike
16 Citations
Background
The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L.
Methods and results
We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice.
Conclusions
This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice.
more …
By
Kakizawa, Sho; Moriguchi, Shigeki; Ikeda, Atsushi; Iino, Masamitsu; Takeshima, Hiroshi
Show all (5)
Post to Citeulike
11 Citations
Junctophilins (JPs) contribute to the formation of junctional membrane complexes between the plasma membrane and the endoplasmic/sarcoplasmic reticulum, and provide a structural platform for channel communication during excitation–contraction coupling in muscle cells. In the brain, two neuronal JP subtypes are widely expressed in neurons. Recent studies have defined the essential role of neural JPs in the communication between cell-surface and intracellular channels, which modulates the excitability and synaptic plasticity of neurons in the cerebellum and hippocampus.
more …
-