Showing 1 to 10 of 6209 matching Articles
Results per page:
By
Decuzzi, P.; Lee, S.; Bhushan, B.; Ferrari, M.
Show all (4)
The margination of a particle circulating in the blood stream has been analyzed. The contribution of buoyancy, hemodynamic forces, van der Waals, electrostatic and steric interactions between the circulating particle and the endothelium lining the vasculature has been considered. For practical applications, the contribution of buoyancy, hemodynamic forces and van der Waals interactions should be only taken into account, whilst the effect of electrostatic and steric repulsion becomes important only at very short distances from the endothelium (1–10 nm). The margination speed and the time for margination ts have been estimated as a function of the density of the particle relative to blood Δ ρ, the Hamaker constant A and radius R of the particle. A critical radius Rc exists for which the margination time ts has a maximum, which is influenced by both Δ ρ and A: the critical radius decreases as the relative density increases and the Hamaker constant decreases. Therefore, particles used for drug delivery should have a radius smaller than the critical value (in the range of 100 nm) to facilitate margination and interaction with the endothelium. While particles used as nanoharvesting agents in proteomics or genomics analysis should have a radius close to the critical value to minimize margination and increase their circulation time.
more …
By
Ott, Kyle A.
; Demetropoulos, Constantine K.; Luongo, Mary E.; Titus, Jack M.; Merkle, Andrew C.; Drewry, David G., III
Show all (6)
It is critical to understand the relationship between under-body blast (UBB) loading and occupant response to provide optimal protection to the warfighter from serious injuries, many of which affect the spine. Previous studies have examined component and whole body response to accelerative based UBB loading. While these studies both informed injury prediction efforts and examined the shortcomings of traditional anthropomorphic test devices in the evaluation of human injury, few studies provide response data against which future models could be compared and evaluated. The current study examines four different loading conditions on a seated occupant that demonstrate the effects of changes in the floor, seat, personal protective equipment (PPE), and reclined posture on whole body post-mortem human surrogate (PMHS) spinal response in a sub-injurious loading range. Twelve PMHS were tested across floor velocities and time-to-peak (TTP) that ranged from 4.0 to 8.0 m/s and 2 to 5 ms, respectively. To focus on sub-injurious response, seat velocities were kept at 4.0 m/s and TTP ranged from 5 to 35 ms. Results demonstrated that spine response is sensitive to changes in TTP and the presence of PPE. However, spine response is largely insensitive to changes in floor loading. Data from these experiments have also served to develop response corridors that can be used to assess the performance and predictive capability of new test models used as human surrogates in high-rate vertical loading experiments.
more …
By
Giudice, J. Sebastian
; Alshareef, Ahmed; Wu, Taotao; Gancayco, Christina A.; Reynier, Kristen A.; Tustison, Nicholas J.; Druzgal, T. Jason; Panzer, Matthew B.
Show all (8)
Finite element (FE) models of the brain are crucial for investigating the mechanisms of traumatic brain injury (TBI). However, FE brain models are often limited to a single neuroanatomy because the manual development of subject-specific models is time consuming. The objective of this study was to develop a pipeline to automatically generate subject-specific FE brain models using previously developed nonlinear image registration techniques, preserving both external and internal neuroanatomical characteristics. To verify the morphing-induced mesh distortions did not influence the brain deformation response, strain distributions predicted using the morphed model were compared to those from manually created voxel models of the same subject. Morphed and voxel models were generated for 44 subjects ranging in age, and simulated using head kinematics from a football concussion case. For each subject, brain strain distributions predicted by each model type were consistent, and differences in strain prediction was less than 4% between model type. This automated technique, taking approximately 2 h to generate a subject-specific model, will facilitate interdisciplinary research between the biomechanics and neuroimaging fields and could enable future use of biomechanical models in the clinical setting as a tool for improving diagnosis.
more …
By
Okamoto, Ruth J.; Wagenseil, Jessica E.; DeLong, William R.; Peterson, Sara J.; Kouchoukos, Nicholas T.; Sundt, Thoralf M., III
Show all (6)
Dilation of the ascending aorta, associated with Marfan Syndrome, bicuspid aortic valve, or advanced age, may lead to aortic dissection and rupture. Mathematical models can be used to assess the relative importance of increased wall stresses and decreased strength in these mechanical failures. To obtain needed inputs for such models, mechanical properties of dilated human ascending aorta were measured in vitro. Specimens for opening angle, biaxial elastic, and uniaxial circumferential strength tests were cut from excised tissue obtained from 54 patients (age 18–81 years) undergoing elective aortic graft replacement surgery. Opening angle was significantly greater in patients older than 50 years (262°±76°, n=21) compared to younger patients (202°±70°, n=13 All biaxial elastic specimens n=40 exhibited nonlinear stress-strain behavior. Rapid increases in circumferential and axial stresses occurred at lower strains in the older patient group than in the younger. Mean strength was significantly lower in older patients (1.35±0.37 MPa, n=14) than younger (2.04 ± 0.46 MPa, n=11, age <50 years). These changes in mechanical properties suggest that age may influence the risk of aortic dissection or rupture of dilated ascending aorta. © 2002 Biomedical Engineering Society.
PAC2002: 8719Rr, 8719Hh
more …
By
Peterson, Kristy; Ozawa, Edwin T.; Pantalos, George M.; Sharp, M. Keith
Show all (4)
A numerical model of the cardiovascular system was used to quantify the influences on cardiac function of intrathoracic pressure and intravascular and intraventricular hydrostatic pressure, which are fundamental biomechanical stimuli for orthostatic response. The model included a detailed arterial circulation with lumped parameter models of the atria, ventricles, pulmonary circulation, and venous circulation. The venous circulation was divided into cranial, central, and caudal regions with nonlinear compliance. Changes in intrathoracic pressure and the effects of hydrostatic pressure were simulated in supine, launch, sitting, and standing postures for 0, 1, and 1.8 G. Increasing intrathoracic pressure experienced with increasing gravity caused 12% and 14% decreases in cardiac output for 1 and 1.8 G supine, respectively, compared to 0 G. Similar results were obtained for launch posture, in which the effects of changing intrathoracic pressure dominated those of hydrostatic pressure. Compared to 0 G, cardiac output decreased 0.9% for 1 G launch and 15% for 1.8 G launch. In sitting and standing, the position of the heart above the hydrostatic indifference level caused the effects of changing hydrostatic pressure to dominate those of intrathoracic pressure. Compared to 0 G, cardiac output decreased 13% for 1 G sitting and 23% for 1.8 G sitting, and decreased 17% for 1 G standing and 31% for 1.8 G standing. For a posture change from supine to standing in 1 G, cardiac output decreased, consistent with the trend necessary to explain orthostatic intolerance in some astronauts during postflight stand tests. Simulated lower body negative pressure (LBNP) in 0 G reduced cardiac output and mean aortic pressure similar to 1 G standing, suggesting that LBNP provides at least some cardiovascular stimuli that may be useful in preventing postflight orthostatic intolerance. A unifying concept, consistent with the Frank–Starling mechanism of the heart, was that cardiac output was proportional to cardiac diastolic transmural pressure for all postures and gravitational accelerations. © 2002 Biomedical Engineering Society.
PAC2002: 8765+y, 8719Bb, 8719Uv, 8719Hh
more …
By
Miller, Logan E.
; Urban, Jillian E.; Davenport, Elizabeth M.; Powers, Alexander K.; Whitlow, Christopher T.; Maldjian, Joseph A.; Stitzel, Joel D.
Show all (7)
Athletes participating in contact sports are exposed to repetitive subconcussive head impacts that may have long-term neurological consequences. To better understand these impacts and their effects, head impacts are often measured during football to characterize head impact exposure and estimate injury risk. Despite widespread use of kinematic-based metrics, it remains unclear whether any single metric derived from head kinematics is well-correlated with measurable changes in the brain. This shortcoming has motivated the increasing use of finite element (FE)-based metrics, which quantify local brain deformations. Additionally, quantifying cumulative exposure is of increased interest to examine the relationship to brain changes over time. The current study uses the atlas-based brain model (ABM) to predict the strain response to impacts sustained by 116 youth football athletes and proposes 36 new, or derivative, cumulative strain-based metrics that quantify the combined burden of head impacts over the course of a season. The strain-based metrics developed and evaluated for FE modeling and presented in the current study present potential for improved analytics over existing kinematically-based and cumulative metrics. Additionally, the findings highlight the importance of accounting for directional dependence and expand the techniques to explore spatial distribution of the strain response throughout the brain.
more …
By
Ardekani, Siamak; Weiss, Robert G.; Lardo, Albert C.; George, Richard T.; Lima, Joao A. C.; Wu, Katherine C.; Miller, Michael I.; Winslow, Raimond L.; Younes, Laurent
Show all (9)
Left ventricular remodeling during the development of heart failure is a strong predictor of cardiovascular mortality. However, methods to objectively quantify remodeling-associated shape changes are not routinely available but may be possible with new computational anatomy tools. In this study, we analyzed and compared multi-detector computed tomographic (MDCT) images of ventricular shape at end-systole (ES) and end-diastole (ED) to determine whether regional structural characteristics could be identified and, as a proof of principle, whether differences in hearts of patients with anterior myocardial infarction (MI) and ischemic cardiomyopathy (ICM) could be distinguished from those with global nonischemic cardiomyopathy (NICM). MDCT images of hearts from 11 patients (5 with ICM) with ejection fractions (EF) < 35% were analyzed. An average ventricular shape model (template) was constructed for each cardiac phase by bringing heart shapes into correspondence using linear and nonlinear image matching algorithms. Next, transformation fields were computed between the template image and individual heart images in the population. Principal component analysis (PCA) method was used to quantify ventricular shape differences described by the transformation vector fields. Statistical analysis of PCA coefficients revealed significant ventricular shape differences at ED (p = 0.03) and ES (p = 0.03). For validation, a second set of 14 EF-matched patients (8 with ICM) were evaluated. The discrimination rule learned from the training data set was able to differentiate ICM from NICM patients (p = 0.008). Application of a novel shape analysis method to in vivo human cardiac images acquired on a clinical scanner is feasible and can quantify regional shape differences at end-systole in remodeled myopathic human myocardium. This approach may be useful in identifying differences in the remodeling process between ICM and NICM populations and possibly in differentiating the populations.
more …
By
Wang, Yong; Rudy, Yoram
Potential-based inverse electrocardiography is a method for the noninvasive computation of epicardial potentials from measured body surface electrocardiographic data. From the computed epicardial potentials, epicardial electrograms and isochrones (activation sequences), as well as repolarization patterns can be constructed. We term this noninvasive procedure Electrocardiographic Imaging (ECGI). The method of choice for computing epicardial potentials has been the Boundary Element Method (BEM) which requires meshing the heart and torso surfaces and optimizing the mesh, a very time-consuming operation that requires manual editing. Moreover, it can introduce mesh-related artifacts in the reconstructed epicardial images. Here we introduce the application of a meshless method, the Method of Fundamental Solutions (MFS) to ECGI. This new approach that does not require meshing is evaluated on data from animal experiments and human studies, and compared to BEM. Results demonstrate similar accuracy, with the following advantages: 1. Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. 2. Elimination of mesh-induced artifacts. 3. Elimination of complex singular integrals that must be carefully computed in BEM. 4. Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool.
more …
By
Fortune, Emma; Lowery, Madeleine M.
In this study, the relationships between the early and late afterpotentials and velocity and amplitude recovery functions (VRF and ARF) in skeletal muscle were examined using model simulation. A mathematical model of the muscle fiber action potential, that incorporated a tubular slow potassium conductance, was developed and used to simulate muscle fiber action potentials at a range of interpulse intervals. The slow potassium conductance produced an afterhyperpolarization which resulted in supernormal action potential conduction velocity and amplitude for interpulse intervals >7 ms. Increasing the number of conditioning stimuli caused a further increase in conduction velocity and amplitude, and an additional phase of supernormality, with a peak at approximately 100 ms. Positive correlations between instantaneous firing rate and both conduction velocity and amplitude were also observed during simulation of repetitive stimulation of the muscle fiber. The relationships were eliminated when the slow potassium conductance channel was removed from the model. The results suggest that an afterhyperpolarization, possibly due to a slow tubular potassium conductance, could cause the VRF and ARF observed in muscle. They additionally suggest that the positive correlations between instantaneous firing rate, conduction velocity, and amplitude are directly related to the VRF and ARF.
more …
By
Rogina, Anamarija
; Pušić, Maja; Štefan, Lucija; Ivković, Alan; Urlić, Inga; Ivanković, Marica; Ivanković, Hrvoje
Show all (7)
The treatment of cartilage defect remains a challenging issue in clinical practice. Chitosan-based materials have been recognized as a suitable microenvironment for chondrocyte adhesion, proliferation and differentiation forming articular cartilage. The use of nasal chondrocytes to culture articular cartilage on an appropriate scaffold emerged as a promising novel strategy for cartilage regeneration. Beside excellent properties, chitosan lacks in biological activity, such as RGD-sequences. In this work, we have prepared pure and protein-modified chitosan scaffolds of different deacetylation degree and molecular weight as platforms for the culture of sheep nasal chondrocytes. Fibronectin (FN) was chosen as an adhesive protein for the improvement of chitosan bioactivity. Prepared scaffolds were characterised in terms of microstructure, physical and biodegradation properties, while FN interactions with different chitosans were investigated through adsorption–desorption studies. The results indicated faster enzymatic degradation of chitosan scaffolds with lower deacetylation degree, while better FN interactions with material were achieved on chitosan with higher number of amine groups. Histological and immunohistochemical analysis of in vitro engineered cartilage grafts showed presence of hyaline cartilage produced by nasal chondrocytes.
more …
-