Showing 1 to 10 of 1112 matching Articles
Results per page:
Export (CSV)
By
Russo, Gianpiero
The paper presents experimental results of two Osterberg’s cell load tests (OLTs) and three conventional load tests (COLTs) in the same subsoil conditions on Continuous Flight Auger (CFA) piles carefully monitored during construction stages. The instrumentation along the pile shaft in all the tests allows interesting comparisons of both global behaviour and local load transfer. Significant differences in the stiffness of the soil-pile system with the different test procedures is outlined. The main differences between the two test procedures occur at the two opposite ends of the pile, as could have been expected, while the observed behaviour in the middle part of the tested piles is close for the two models. A relatively simple FEM model has been calibrated on the basis of the OLTs results. The same model is capable of accurately matching the experimental results of the COLTs, proving that the observed differences are not due to random factors. Furthermore, the same model has been used to simulate ideal load tests. Such a reliable simulation shows that both the experimental procedures are actually responsible for significant differences in the behaviour of the soil-pile system even in the simple case of a concentrated axial load. Large differences arise in terms of the stiffness of the system with the OLTs providing by far the stiffest response. Despite being intermediate between the OLT and the ILT, the COLTs provide a response of the pile-soil system, which is on the average about two times stiffer than the Ideal test, where the force applied on top of the pile does not depend on a tangible reaction system. Care should be thus taken when considering the results of such tests in the prediction of the settlement of a piled foundation. Correction factors should be applied to the experimentally observed behaviour.
more …
By
Mimouni, Thomas; Laloui, Lyesse
Using pile foundations as heat exchangers with the ground provides an efficient and reliable energy source for the heating and cooling of buildings. However, thermal expansion or contraction of the concrete brings new challenges to the design of such structures. The present study investigates the impact of temperature variation on the mobilised bearing capacities of geothermal piles. The mechanisms driving the variations and redistribution of mobilised bearing forces along geothermal piles are identified using Thermo-Pile software. The EPFL and Lambeth College test piles are modelled and analysed as real-scale experiments. Three simple representative cases are used to investigate the impact of over-sizing geothermal piles on their serviceability. It is found that the mechanisms responsible for the variations and redistribution of mobilised bearing forces along the piles are unlikely to cause geotechnical failure, even if the ultimate bearing force of a pile is reached. Furthermore, over-sizing geothermal piles compared to conventional piles can have a negative impact on their serviceability.
more …
By
Kong, Gangqiang; Wen, Lei
; Liu, Hanlong; Zheng, Junjie; Yang, Qing
Show all (5)
The grouted steel pipe micropile is widely used as structural support and in situ improvement in China. This paper presents measurement of the radial soil stress and excess pore water pressure during the construction processes of the grouted steel pipe micropile (with an enlarged driving shoe) embedded in marine soft clay. Comparative analysis was conducted between the predictions by cavity expansion method (CEM) and maximum stress values in situ. The results show that the existence of the enlarged driving shoe has an effect on the stress change in the surrounding soils during penetration. The maximum radial total stress and excess pore water pressure generated during micropile penetration are approximately 4–6σv0′ and 1.5–2.5σv0′, respectively. The maximum radial total stress and excess pore water pressure, which appeared near the pile wall during the process of post-grouting, are approximately 5–7cu and 4–6cu, respectively. The predictions of CEM for pore water pressure during micropile penetration and post-grouting are in reasonable agreement with the field test data.
more …
By
Kim, Donghee; Ryu, Dongwoo; Lee, Changho; Lee, Woojin
Show all (4)
The uncertainty in the spatial distributions of consolidation settlement (sc) and time (tp) for Songdo New City is evaluated by using a probabilistic procedure. Ordinary kriging and three theoretical semivariogram models are used to estimate the spatial distributions of geo-layers which affect sc and tp in this study. The spatial map of mean (μ) and standard deviation (σ) for sc and tp are determined by using a first-order second moment method based on the evaluated statistics and probability density functions (PDFs) of soil properties. It is shown that the coefficients of variation (COVs) of the compression ratio [Cc/(1 + e0)] and the coefficient of consolidation (cv) are the most influential factors on the uncertainties of sc and tp, respectively. The μ and σ of the sc and tp, as well as the probability that sc exceeds 100 cm [P(sc > 100 cm)] and the probability that tp exceeds 36 months [P(tp > 36 months)] in Sect. , are observed to be larger than those of other sections because the thickness of the consolidating layer in Sect. is the largest in the entire study area. The area requiring additional fill after the consolidation appears to increase as the COV of Cc/(1 + e0) increases and as the probabilistic design criterion (α) decreases. It is also shown that the area requiring the prefabricated vertical drains installation increases as the COV of cv increases and as the α decreases. The design procedure presented in this paper could be used in the decision making process for the design of geotechnical structures at coastal reclamation area.
more …
By
Wu, Chuangzhou; Chu, Jian; Wu, Shifan; Cheng, Liang; Paassen, Leon A.
Show all (5)
Biogrouting is a new ground improvement method that has been studied in recent years. This method involves mainly the use of a microbially induced calcite precipitation process to bind soil particles to increase the strength or to fill in the pores of soil or joints of rock for seepage control. There are two major challenges in the use of biogrout for seepage control through rock joints. The first is how to inject the biogrout solutions, and the second is to understand the mechanisms for the formation of calcite under seepage flow. In this paper, a study on the injection of biogrout solution and the formation of precipitates along a circular 1D flow channel is presented. To minimize the influence of flow, a new one-phase injection method to inject bacterial solution and cementation agents simultaneously was adopted in this study. Factors affecting the formation and distribution of precipitates along the flow channel such as flow velocity, flow rate, and aperture of flow channel were investigated. The experimental results indicated that less calcite was precipitated at locations further away from the injection point due to depletion of the reactants’ concentrations along the flow path. Using the one-phase injection method, the bacterial activity had a major effect on the accumulation of the calcite on the inner surface of the flow channel. The total calcite precipitated on the surface of the flow channel increased slightly with increasing bacterial activity or flow rate. An equation to predict the distance travelled by the biosolution has been derived based on the testing results.
more …
By
Xiong, Hao
; Nicot, François; Yin, Zhenyu
A 3D multi-scale approach is presented to investigate the mechanical behavior of a macroscopic specimen consisting of a granular assembly, as a boundary value problem. The core of this approach is a multi-scale coupling, wherein the finite element method is used to solve a boundary value problem and a micromechanically based model is employed as constitutive relationship used at a representative volume element scale. This approach provides a convenient way to link the macroscopic observations with intrinsic microscopic mechanisms. The plane strain triaxial loading condition is selected to simulate the occurrence of strain localization. A series of tests are performed, wherein distinct failure patterns are observed and analyzed. A system of shear band naturally appears in a homogeneous setting specimen. By defining the shear band area, microstructural mechanisms are separately investigated inside and outside the shear band. The normalized second-order work introduced as an indicator of instability occurrence is analyzed not only on the macroscale but also on the micro scale.
more …
By
Tatone, Bryan S. A.; Grasselli, Giovanni
Discontinuities in brittle geomaterials, including concrete and rock, represent localized zones of weakness and enhanced hydraulic transmissivity that often control the hydromechanical behavior of the medium. The shearing of discontinuities and the resulting morphological changes can significantly alter this behavior. In this work, a procedure is developed to characterize sheared discontinuity replicas as a function of the applied normal load using X-ray micro-computed tomography (micro-CT) imagery. A specimen design and testing procedure that facilitates CT scanning is presented along with an image processing procedure to quantify the morphological changes in the specimens. Subsequently, the results of direct shear testing and image-based measurements of mean fracture aperture, surface area, median effective aperture, and the preferential orientation of fracture void space are presented and discussed. Application of the procedure developed herein yields characteristics of the morphology of sheared discontinuities that were previously not possible to obtain or that were time consuming to collect with destructive sectioning methods.
more …
By
Ji, Xiaomeng
; Kong, Xianjing; Zou, Degao
; Sang, Yong; Zhou, Chenguang; Liu, Jingmao; Zhao, Jianlong
Show all (7)
Membrane penetration during triaxial tests can degrade the accuracy of results which affects the volumetric strain in drained tests or the pore pressure in undrained tests, and this problem has attracted much attention in the research community. However, a major portion of the attention has been focused on sand, and studies on gravelly-sandy soils and sandy-gravelly soils have largely been neglected. In previous investigations, in order to reduce or eliminate the impact of membrane penetration on test results, most of existing methods may use unreasonable assumptions or introduce other unpredictable artifacts into triaxial tests. Thus, this paper describes a method that uses image processing based on the digital image correlation (DIC) technique to perform non-contact, global measurement of membrane penetration of the specimen during triaxial tests. The method allows the full-field axial and radial strain of a cylindrical specimen to be accurately measured for estimating the skeletal volumetric strain. The membrane penetration was determined by the difference between the total volumetric strain and the skeletal volumetric strain. In addition, this method verifies the basic assumption that the radial strains in all directions at the same height of the specimen are approximately equal. In this study, the test results indicate that membrane penetration ΔVm exhibits an exponential relation with the normalized effective confining pressure. As the content of coarse particles increases and the relative density decreases, the amount of membrane penetration increases, but the increasing trend is weakened with the increase of coarse particle content and the decrease of relative density. The specimen gradation has a critical effect on membrane penetration and the shape of the particles also affects membrane penetration. A comparison of the test results with the results of Nicholson's empirical formula shows an error on the part of the formula that increases with sample density.
more …
By
Liu, Wei
; Zhao, Yu; Shi, Peixin; Li, Jiaoyang; Gan, Penglu
Show all (5)
This paper investigates the face stability of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests. A half-circular tunnel model with a rigid front face was designed and tested. The ground movement was mobilized by pulling the tunnel face backwards at different speeds. The support pressure at tunnel face, settlement at ground surface, and internal movement of soil body were measured by load cells, linear variable differential transducers, and a camera, respectively, and the progress of face failure was observed through a transparent lateral wall of model tank. The tests show that, as the tunnel face moves backwards, the support pressure at the tunnel face drops sharply initially, then rebounds slightly, and tends to be stabilized at the end. Similarly, the ground surface settlement shows a three-stage variation pattern. Using the particle image velocimetry technique, the particle movement, shear strain, and vortex location of soil are analyzed. The variation of support pressure and ground surface settlement related to the internal movement of soil particles is discussed. The impact of the tunnel face moving speed on the face stability is discussed. As the tunnel face moves relatively fast, soil failure originates from a height above tunnel invert and an analytical model is developed to analyze such failure.
more …
-