Showing 1 to 10 of 884 matching Articles
Results per page:
Export (CSV)
By
Kaster, Anne-Kristin
; Sobol, Morgan S.
Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies.
Key points
• Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways.
• Disadvantages of metagenome-assembled genomes are overcome by single-cell omics.
• Functional analysis of single cells explores the heterogeneity of gene expression.
• Technical challenges still limit this field, thus prompting new method developments.
more …
By
Peoples, Logan M.; Kyaw, Than S.; Ugalde, Juan A.; Mullane, Kelli K.; Chastain, Roger A.; Yayanos, A. Aristides; Kusube, Masataka; Methé, Barbara A.; Bartlett, Douglas H.
Show all (9)
Background
The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea.
Results
Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems.
Conclusions
We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
more …
By
Chistoserdova, Ludmila
The focus of this review is on the recent data from the omics approaches, measuring the presence of methylotrophs in natural environments. Both Bacteria and Archaea are considered. The data are discussed in the context of the current knowledge on the biochemistry of methylotrophy and the physiology of cultivated methylotrophs. One major issue discussed is the recent metagenomic data pointing toward the activity of “aerobic” methanotrophs, such as Methylobacter, in microoxic or hypoxic conditions. A related issue of the metabolic distinction between aerobic and “anaerobic” methylotrophy is addressed in the light of the genomic and metagenomic data for respective organisms. The role of communities, as opposed to single-organism activities in environmental cycling of single-carbon compounds, such as methane, is also discussed. In addition, the emerging issue of the role of non-traditional methylotrophs in global metabolism of single-carbon compounds and the role of methylotrophy pathways in non-methylotrophs is briefly mentioned.
more …
By
Scheuner, Carmen; Tindall, Brian J; Lu, Megan; Nolan, Matt; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne; Pitluck, Sam; Huntemann, Marcel; Liolios, Konstantinos; Pagani, Ioanna; Mavromatis, Konstantinos; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Jeffries, Cynthia D; Hauser, Loren; Land, Miriam; Mwirichia, Romano; Rohde, Manfred; Abt, Birte; Detter, John C; Woyke, Tanja; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter
Show all (30)
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448T, were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the GenomicEncyclopedia ofBacteriaandArchaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
more …
By
Mead, David A.; Monsma, Scott; Mei, Baigen; Gowda, Krishne; Lodes, Michael; Schoenfeld, Thomas W.
Show all (6)
Bacteriophage and viral replisomes typically require fewer proteins to replicate their genome compared to their cellular counterparts and are therefore model systems for studying this fundamental and ubiquitous process. Replication elements also tend to be arranged in a cluster or operon, as opposed to the distributed replication genes found in Bacteria and Archaea. A gene encoding a DNA polymerase with innate reverse transcriptase activity was previously isolated from an uncultivated Octopus hot spring viral metagenome sample collected in Yellowstone National Park. This report describes the complete metagenomic sequence of Octopus Spring OS3173 virus, novel structural variants, and new functionally active polymerase derivatives. The 37,256 bp dsDNA circular viral genome contains 48 open reading frames, with numerous genes associated with replication, including a full-length, polyprotein-like variant of the polymerase. OS3173 is predicted to infect an Aquificales host, as multiple clustered regularly interspaced short palindromic repeat (CRISPR) sequences matching seven locations in the virus genome are found within a pink filament streamer microbial community metagenome from Octopus Spring. Bioinformatic analysis of the DNA surrounding the CRISPR spacer region matches portions of a cultivated Thermocrinis ruber genome from the same location with high sequence identity. Enzymatic screening of large-insert clones yielded numerous polyprotein-containing genes encoding active thermostable variants from this virus, confirming the functional diversity of the polymerase in its native habitat. One variant demonstrated robust PCR capabilities compared to the original “wild-type” enzyme.
more …
By
Grieb, Anissa; Bowers, Robert M.; Oggerin, Monike; Goudeau, Danielle; Lee, Janey; Malmstrom, Rex R.; Woyke, Tanja; Fuchs, Bernhard M.
Show all (8)
Background
Metagenomics and single cell genomics provide a window into the genetic repertoire of yet uncultivated microorganisms, but both methods are usually taxonomically untargeted. The combination of fluorescence in situ hybridization (FISH) and fluorescence activated cell sorting (FACS) has the potential to enrich taxonomically well-defined clades for genomic analyses.
Methods
Cells hybridized with a taxon-specific FISH probe are enriched based on their fluorescence signal via flow cytometric cell sorting. A recently developed FISH procedure, the hybridization chain reaction (HCR)-FISH, provides the high signal intensities required for flow cytometric sorting while maintaining the integrity of the cellular DNA for subsequent genome sequencing. Sorted cells are subjected to shotgun sequencing, resulting in targeted metagenomes of low diversity.
Results
Pure cultures of different taxonomic groups were used to (1) adapt and optimize the HCR-FISH protocol and (2) assess the effects of various cell fixation methods on both the signal intensity for cell sorting and the quality of subsequent genome amplification and sequencing. Best results were obtained for ethanol-fixed cells in terms of both HCR-FISH signal intensity and genome assembly quality. Our newly developed pipeline was successfully applied to a marine plankton sample from the North Sea yielding good quality metagenome assembled genomes from a yet uncultivated flavobacterial clade.
Conclusions
With the developed pipeline, targeted metagenomes at various taxonomic levels can be efficiently retrieved from environmental samples. The resulting metagenome assembled genomes allow for the description of yet uncharacterized microbial clades.
Video abstract.
more …
The ISME Journal (2013-01-01) 7: 137-147
, January 01, 2013
By
Garcia, Sarahi L; McMahon, Katherine D; Martinez-Garcia, Manuel; Srivastava, Abhishek; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk
Show all (9)
Actinobacteria within the acI lineage are often numerically dominating in freshwater ecosystems, where they can account for >50% of total bacteria in the surface water. However, they remain uncultured to date. We thus set out to use single-cell genomics to gain insights into their genetic make-up, with the aim of learning about their physiology and ecological niche. A representative from the highly abundant acI-B1 group was selected for shotgun genomic sequencing. We obtained a draft genomic sequence in 75 larger contigs (sum=1.16 Mb), with an unusually low genomic G+C mol% (∼42%). Actinobacteria core gene analysis suggests an almost complete genome recovery. We found that the acI-B1 cell had a small genome, with a rather low percentage of genes having no predicted functions (∼15%) as compared with other cultured and genome-sequenced microbial species. Our metabolic reconstruction hints at a facultative aerobe microorganism with many transporters and enzymes for pentoses utilization (for example, xylose). We also found an actinorhodopsin gene that may contribute to energy conservation under unfavorable conditions. This project reveals the metabolic potential of a member of the global abundant freshwater Actinobacteria.
more …
The ISME Journal (2020-03-01) 14: 659-675
, March 01, 2020
By
Doud, Devin F. R.; Bowers, Robert M.; Schulz, Frederik
; Raad, Markus; Deng, Kai; Tarver, Angela; Glasgow, Evan; Meulen, Kirk; Fox, Brian
; Deutsch, Sam; Yoshikuni, Yasuo
; Northen, Trent
; Hedlund, Brian P.
; Singer, Steven W.
; Ivanova, Natalia
; Woyke, Tanja
Show all (16)
Assigning a functional role to a microorganism has historically relied on cultivation of isolates or detection of environmental genome-based biomarkers using a posteriori knowledge of function. However, the emerging field of function-driven single-cell genomics aims to expand this paradigm by identifying and capturing individual microbes based on their in situ functions or traits. To identify and characterize yet uncultivated microbial taxa involved in cellulose degradation, we developed and benchmarked a function-driven single-cell screen, which we applied to a microbial community inhabiting the Great Boiling Spring (GBS) Geothermal Field, northwest Nevada. Our approach involved recruiting microbes to fluorescently labeled cellulose particles, and then isolating single microbe-bound particles via fluorescence-activated cell sorting. The microbial community profiles prior to sorting were determined via bulk sample 16S rRNA gene amplicon sequencing. The flow-sorted cellulose-bound microbes were subjected to whole genome amplification and shotgun sequencing, followed by phylogenetic placement. Next, putative cellulase genes were identified, expressed and tested for activity against derivatives of cellulose and xylose. Alongside typical cellulose degraders, including members of the Actinobacteria, Bacteroidetes, and Chloroflexi, we found divergent cellulases encoded in the genome of a recently described candidate phylum from the rare biosphere, Goldbacteria, and validated their cellulase activity. As this genome represents a species-level organism with novel and phylogenetically distinct cellulolytic activity, we propose the name Candidatus ‘Cellulosimonas argentiregionis’. We expect that this function-driven single-cell approach can be extended to a broad range of substrates, linking microbial taxonomy directly to in situ function.
more …
By
Hunt, Greg J.; Page, Robert E., Jr.
A colony-level phenotype was used to map the major sex determination locus (designatedX) in the honey bee (Apis mellifera). Individual queen bees (reproductive females) were mated to single drones (fertile males) by instrumental insemination. Haploid drone progeny of an F1 queen were each backcrossed to daughter queens from one of the parental lines. Ninety-eight of the resulting colonies containing backcross progeny were evaluated for the trait ‘low brood-viability’ resulting from the production of diploid drones that were homozygous atX. DNA samples from the haploid drone fathers of these colonies were used individually in polymerase chain reactions (PCR) with 10-base primers. These reactions generated random amplified polymorphic DNA (RAPD) markers that were analyzed for cosegregation with the colony-level phenotype. One RAPD marker allele was shared by 22 of 25 drones that fathered low brood-viability colonies. The RAPD marker fragment was cloned and partially sequenced. Two primers were designed that define a sequence-tagged site (STS) for this locus. The primers amplified DNA marker fragments that cosegregated with the original RAPD marker. In order to more precisely estimate the linkage betweenX and the STS locus, another group of bees consisting of progeny from one of the low-brood viability colonies was used in segregation analysis. Four diploid drones and 181 of their diploid sisters (workers, nonfertile females) were tested for segregation of the RAPD and STS markers. The cosegregating RAPD and STS markers were codominant due to the occurrence of fragment-length alleles. The four diploid drones were homozygous for these markers but only three of the 181 workers were homozygotes (recombinants). Therefore the distance betweenX and the STS locus was estimated at 1.6 cM. An additional linked marker was found that was 6.6 cM from the STS locus.
more …
By
Dmytrenko, Oleg; Russell, Shelbi L; Loo, Wesley T; Fontanez, Kristina M; Liao, Li; Roeselers, Guus; Sharma, Raghav; Stewart, Frank J; Newton, Irene LG; Woyke, Tanja; Wu, Dongying; Lang, Jenna Morgan; Eisen, Jonathan A; Cavanaugh, Colleen M
Show all (14)
Background
Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced.
Results
Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host.
Conclusions
The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
more …
-