Showing 1 to 10 of 37 matching Articles
Results per page:
Export (CSV)
By
Dmytrenko, Oleg; Russell, Shelbi L; Loo, Wesley T; Fontanez, Kristina M; Liao, Li; Roeselers, Guus; Sharma, Raghav; Stewart, Frank J; Newton, Irene LG; Woyke, Tanja; Wu, Dongying; Lang, Jenna Morgan; Eisen, Jonathan A; Cavanaugh, Colleen M
Show all (14)
Background
Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced.
Results
Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host.
Conclusions
The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
more …
By
Jarett, Jessica K.
; Nayfach, Stephen; Podar, Mircea; Inskeep, William; Ivanova, Natalia N.; Munson-McGee, Jacob; Schulz, Frederik; Young, Mark; Jay, Zackary J.; Beam, Jacob P.; Kyrpides, Nikos C.; Malmstrom, Rex R.
; Stepanauskas, Ramunas; Woyke, Tanja
Show all (14)
Background
Nanoarchaeota are obligate symbionts of other Archaea first discovered 16 years ago, yet little is known about this largely uncultivated taxon. While Nanoarchaeota diversity has been detected in a variety of habitats using 16S rRNA gene surveys, genome sequences have been available for only three Nanoarchaeota and their hosts. The host range and adaptation of Nanoarchaeota to a wide range of environmental conditions has thus largely remained elusive. Single-cell genomics is an ideal approach to address these questions as Nanoarchaeota can be isolated while still attached to putative hosts, enabling the exploration of cell-cell interactions and fine-scale genomic diversity.
Results
From 22 single amplified genomes (SAGs) from three hot springs in Yellowstone National Park, we derived a genome-based phylogeny of the phylum Nanoarchaeota, linking it to global 16S rRNA gene diversity. By exploiting sequencing of co-sorted tightly attached cells, we associated Nanoarchaeota with 6 novel putative hosts, 2 of which were found in multiple SAGs, and showed that the same host species may associate with multiple species of Nanoarchaeota. Comparison of single nucleotide polymorphisms (SNPs) within a population of Nanoarchaeota SAGs indicated that Nanoarchaeota attached to a single host cell in situ are likely clonal. In addition to an overall pattern of purifying selection, we found significantly higher densities of non-synonymous SNPs in hypothetical cell surface proteins, as compared to other functional categories. Genes implicated in interactions in other obligate microbe-microbe symbioses, including those encoding a cytochrome bd-I ubiquinol oxidase and a FlaJ/TadC homologue possibly involved in type IV pili production, also had relatively high densities of non-synonymous SNPs.
Conclusions
This population genetics study of Nanoarchaeota greatly expands the known potential host range of the phylum and hints at what genes may be involved in adaptation to diverse environments or different hosts. We provide the first evidence that Nanoarchaeota cells attached to the same host cell are clonal and propose a hypothesis for how clonality may occur despite diverse symbiont populations.
more …
By
Gehlot, Hukam Singh; Ardley, Julie; Tak, Nisha; Tian, Rui; Poonar, Neetu; Meghwal, Raju R.; Rathi, Sonam; Tiwari, Ravi; Adnawani, Wan; Seshadri, Rekha; Reddy, T. B. K.; Pati, Amrita; Woyke, Tanja; Pillay, Manoj; Markowitz, Victor; Baeshen, Mohammed N.; Al-Hejin, Ahmed M.; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne
Show all (20)
Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.
more …
By
Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk; Seshadri, Rekha; Ivanova, Natalia N; Kyrpides, Nikos C
Show all (9)
Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses.
Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts.
more …
By
Gagunashvili, Andrey N.; Andrésson, Ólafur S. 
Background
Cyanobacteria of the genus Nostoc are capable of forming symbioses with a wide range of organism, including a diverse assemblage of cyanolichens. Only certain lineages of Nostoc appear to be able to form a close, stable symbiosis, raising the question whether symbiotic competence is determined by specific sets of genes and functionalities.
Results
We present the complete genome sequencing, annotation and analysis of two lichen Nostoc strains. Comparison with other Nostoc genomes allowed identification of genes potentially involved in symbioses with a broad range of partners including lichen mycobionts. The presence of additional genes necessary for symbiotic competence is likely reflected in larger genome sizes of symbiotic Nostoc strains. Some of the identified genes are presumably involved in the initial recognition and establishment of the symbiotic association, while others may confer advantage to cyanobionts during cohabitation with a mycobiont in the lichen symbiosis.
Conclusions
Our study presents the first genome sequencing and genome-scale analysis of lichen-associated Nostoc strains. These data provide insight into the molecular nature of the cyanolichen symbiosis and pinpoint candidate genes for further studies aimed at deciphering the genetic mechanisms behind the symbiotic competence of Nostoc. Since many phylogenetic studies have shown that Nostoc is a polyphyletic group that includes several lineages, this work also provides an improved molecular basis for demarcation of a Nostoc clade with symbiotic competence.
more …
By
Reeve, Wayne; Sullivan, John; Ronson, Clive; Tian, Rui; Munk, Christine; Han, Cliff; Reddy, T.B.K.; Seshadri, Rekha; Woyke, Tanja; Pati, Amrita; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos
Show all (13)
Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICEMlSymR7A, also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. The high-quality draft genome is arranged in 70 scaffolds of 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.
more …
By
Nouioui, Imen; Carmen Montero-Calasanz, Maria; Ghodhbane-Gtari, Faten; Rohde, Manfred; Tisa, Louis S.; Klenk, Hans-Peter; Gtari, Maher
Show all (7)
Strain BCU110501T was the first isolate reported to fulfill Koch’s postulates by inducing effective nodules on its host plant of origin Discaria trinervis (Rhalmnaceae). Based on 16S rRNA gene sequence similarities, the strain was found to be most closely related to the type strain of Frankia elaeagni DSM 46783T (98.6%) followed by F. alni DSM 45986T (98.2%), F. casuarinae DSM 45818T (97.8%) and F. inefficacies DSM 45817T (97.8%). Digital DNA:DNA hybridizations (dDDH) between strain BCU110501Tand the type strains of other Frankia species were clearly below the cutoff point of 70%. The G+C content of DNA is 72.36%. The cell wall of strain BCU110501T contained meso-diaminopimelic acid and the cell sugars were galactose, glucose, mannose, xylose and ribose. Polar lipids were phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipid (GPL1−3), phosphatidylglycerol (PG) and an unknown lipid (L). The major fatty acids of strain BCU110501T consisted of iso-C16:0, C17:1 w8c and C16:0. Major menaquinones were MK9 (H4), MK9 (H6) and MK9 (H2). Based on these analyses, strain BCU110501T (=DSM 46785T=CECT 9042T) should be classified as the type strain of a novel Frankia species, for which the name Frankia discariae sp. nov. is proposed.
more …
By
Lombardo, Michael P.
A central question in behavioral ecology has been why animals live in groups. Previous theories about the evolution of sociality focused on the potential benefits of decreased risk of predation, increased foraging or feeding efficiency, and mutual aid in defending resources and/or rearing offspring. This paper argues that access to mutualistic endosymbiotic microbes is an underappreciated benefit of group living and sets out to reinvigorate Troyer’s hypothesis that the need to obtain cellulolytic microbes from conspecifics influenced the evolution of social behavior in herbivores and to extend it to nonherbivores. This extension is necessary because the benefits of endosymbionts are not limited to nutrition; endosymbionts also help protect their hosts from pathogens. When hosts must obtain endosymbionts from conspecifics, they are forced to interact. Thus, complex forms of sociality may be more likely to evolve when hosts must repeatedly obtain endosymbionts from conspecifics than when endosymbionts can be obtained either directly from the environment, are vertically transmitted, or when repeated inoculations are not necessary. Observations from a variety of taxa are consistent with the ideas that individuals benefit from group living by gaining access to endosymbionts and the complexity of social behavior is associated with the mode of acquisition of endosymbionts. Ways to test this theory include (a) experiments designed to examine the effects of endosymbionts on host fitness and how endosymbionts are obtained and (b) using phylogenetic analyses to examine endosymbiont–host coevolution with the goal of determining the relationship between the mode of endosymbiont acquisition and host sociality.
more …
By
Marcos-García, Marta; Menéndez, Esther; Cruz-González, Xavier; Velázquez, Encarna; Mateos, Pedro F.; Rivas, Raúl
Show all (6)
The diversity of rhizobia that establish symbiosis with Lotus corniculatus has scarcely been studied. Several species of Mesorhizobium are endosymbionts of this legume, including Mesorhizobium loti, the type species of this genus. We analysed the genetic diversity of strains nodulating Lotus corniculatus in Northwest Spain and ten different RAPD patterns were identified among 22 isolates. The phylogenetic analysis of the 16S rRNA gene showed that the isolated strains belong to four divergent phylogenetic groups within the genus Mesorhizobium. These phylogenetic groups are widely distributed worldwide and the strains nodulate L. corniculatus in several countries of Europe, America and Asia. Three of the groups include the currently described Mesorhizobium species M. loti, M. erdmanii and M. jarvisii which are L. corniculatus endosymbionts. An analysis of the recA and atpD genes showed that our strains belong to several clusters, one of them very closely related to M. jarvisii and the remanining ones phylogenetically divergent from all currently described Mesorhizobium species. Some of these clusters include L. corniculatus nodulating strains isolated in Europe, America and Asia, although the recA and atpD genes have been sequenced in only a few L. corniculatus endosymbionts. The results of this study revealed great phylogenetic diversity of strains nodulating L. corniculatus, allowing us to predict that even more diversity will be discovered as further ecosystems are investigated.
more …
By
Orlikowska, Teresa; Nowak, Katarzyna; Reed, Barbara
Bacteria and plants are joined in various symbiotic relationships that have developed over millennia and have influenced the evolution of both groups. Bacteria inhabit the surfaces of most plants and are also present inside many plant organs. These bacteria may have positive, neutral or negative impacts on their plant hosts. Probiotic effects may improve plant nutrition or increase resistance to biotic and abiotic stresses. Conversely pathogenic bacteria may kill or reduce the vigor of plant hosts. In addition some bacteria inhabit plants and profit from excess metabolites or shelter while not injuring the plant. Micropropagation of plants is based on the stimulation of organogenesis or embryogenesis from explants that are superficially decontaminated and placed into a sterile environment. If successful, this process removes bacteria from surfaces, but those inhabiting inner tissues and organs are usually not affected by these steriliants. In vitro conditions are designed for optimal plant growth and development, however these conditions are also often ideal for bacterial multiplication. The presence of bacteria in the in vitro environment was almost universally considered negative for plant culture, but more recently this view has been questioned. Certain bacteria appear to have a beneficial effect on the explants in culture; increasing multiplication and rooting, increasing explant quality, and organo- and embryogenesis of recalcitrant genotypes. The most important role of beneficial bacteria for micropropagated plants is likely to be during acclimatization, when growth is resumed under natural conditions. This review includes the role of bacterial interactions in plants, especially those grown in vitro.
more …
-