Showing 1 to 10 of 74 matching Articles
Results per page:
Export (CSV)
By
van Wilgenburg, Ellen; Driessen, Gerard; Beukeboom, Leo W
The haplodiploid sex determining mechanism in Hymenoptera (males are haploid, females are diploid) has played an important role in the evolution of this insect order. In Hymenoptera sex is usually determined by a single locus, heterozygotes are female and hemizygotes are male. Under inbreeding, homozygous diploid and sterile males occur which form a genetic burden for a population. We review life history and genetical traits that may overcome the disadvantages of single locus complementary sex determination (sl-CSD). Behavioural adaptations to avoid matings between relatives include active dispersal from natal patches and mating preferences for non-relatives. In non-social species, temporal and spatial segregation of male and female offspring reduces the burden of sl-CSD. In social species, diploid males are produced at the expense of workers and female reproductives. In some social species, diploid males and diploid male producing queens are killed by workers. Diploid male production may have played a role in the evolution or maintenance of polygyny (multiple queens) and polyandry (multiple mating). Some forms of thelytoky (parthenogenetic female production) increase homozygosity and are therefore incompatible with sl-CSD. We discuss a number of hypothetical adaptations to sl-CSD which should be considered in future studies of this insect order.
more …
By
Wagner, Robert; Bunz, Helmut; Linke, Claudia; Möhler, Ottmar; Naumann, Karl-Heinz; Saathoff, Harald; Schnaiter, Martin; Schurath, Ulrich
Show all (8)
Abstract
Since its initial operation in 1997, the AIDA aerosol and cloud chamber of Forschungszentrum Karlsruhe (Aerosol Interactions and Dynamics in the Atmosphere) has been established as a unique experimental facility to study multi-phase processes over a wide range of atmospheric conditions. Research activities include heterogeneous chemistry on aerosols, hygroscopic and optical properties of complex aerosol particles, homogeneous freezing of supercooled solution droplets, heterogeneous freezing and cirrus cloud formation, as well as formation and characterisation of polar stratospheric cloud constituents.
more …
By
Dietemann, Vincent; Pflugfelder, Jochen; Härtel, Stephan; Neumann, Peter; Crewe, Robin M.
Show all (5)
Social parasites exploit their host’s communication system to usurp resources and reproduce. In the honeybee, Apis mellifera, worker reproduction is regulated by pheromones produced by the queen and the brood. Workers usually reproduce when the queen is removed and young brood is absent. However, Cape honeybee workers, Apis mellifera capensis, are facultative intraspecific social parasites and can take over reproduction from the host queen. Investigating the manner in which parasitic workers compete with host queens pheromonally can help us to understand how such parasitism can evolve and how reproductive division of labour is regulated. In A. m. capensis, worker reproduction is associated with the production of queen-like pheromones. Using pheromonal contest experiments, we show that Apis mellifera scutellata queens do not prevent the production of queen-like mandibular gland compounds by the parasites. Given the importance of these pheromones in acquiring reproductive status, our data suggest that the single invasive lineage of parasitic workers occurring in the range of A. m. scutellata was selected for its superior ability to produce these signals despite the presence of a queen. Such resistance was indeed less frequent amongst other potentially parasitic lineages. Resistance to reproductive regulation by host queens is probably the key factor that facilitates the evolution of social parasitism by A. m. capensis workers. It constitutes a mechanism that allows workers to evade reproductive division of labour and to follow an alternative reproductive option by acquiring direct fitness in foreign colonies instead of inclusive fitness in their natal nests.
more …
By
Nakagawa, Takao; Kubota, Toshihiko; Ido, Kazunori; Sakuma, Takahiro; Matsuda, Ken
Show all (5)
Chemotherapy in itself is suspected to cause the development or selection of drug-resistant tumor cells, which have more aggressive phenotypes. The authors investigated the differential changes of gene expression in the 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU)-resistant subline of the C6 rat glioma (C6AR2), which was established from C6 rat glioma cells by exposure to ACNU in vitro. The resistance to ACNU of C6AR2 was confirmed by MTS assay. The increased expression of O6-methylguanine-DNA methyltransferase in C6AR2 cells was shown using RT-PCR. C6AR2 cells displayed a higher proliferative activity relative to C6 cells. Analysis with cDNA array showed that 19 genes were transcriptionally up-regulated and 16 genes down-regulated in C6AR2 cells compared to C6 cells. They belonged to various functional classes of genes beside the drug-resistant system. Among them, the down-regulation of several genes in C6AR2 cells, including c-kit, pleiotrophin, platelet-derived growth factor receptor-α, peripheral myelin protein-22 and NG2 chondroitin sulfate proteoglycan, which are expressed originally in developmental glial linages, were verified using semi-quantitative RT-PCR. In addition, the gene expression of astroglial intermediate filament proteins, including GFAP, vimentin and nestin, were decreased in C6AR2 cells relative to C6 cells in semi-quantitative RT-PCR and immunocytochemistry. These findings may represent an undifferentiated state of ACNU-resistant glioma cells and a more aggressive phenotype in recurrent tumors following chemotherapy.
more …
Nature (2006-10-26) 443: 925-927
, October 26, 2006
By
Stahl, David A.; Davidson, Seana K.
Gutless marine worms harness the resources of a team of bacteria in lieu of a digestive or excretory system. A genome-sequence analysis now defines the roles of the microbes.
By
Nanork, Piyamas; Wongsiri, Siriwat; Oldroyd, Benjamin P.
Honeybee (Apis) workers cannot mate, but retain functional ovaries. When colonies have lost their queen, many young workers begin to activate their ovaries and lay eggs. Some of these eggs are reared, but most are not and are presumably eaten by other workers (worker policing). Here we explore some of the factors affecting the reproductive success of queenless workers of the red dwarf honeybee Apis florea. Over a 2-year period we collected 40 wild colonies and removed their queens. Only two colonies remained at their translocated site long enough to rear males to pupation while all the others absconded. Absconding usually occurred after worker policing had ceased, as evidenced by the appearance of larvae. Dissections of workers from eight colonies showed that in A. florea, 6% of workers have activated ovaries after 4 days of queenlessness, and that 33% of workers have activated ovaries after 3 weeks. Worker-laid eggs may appear in nests within 4 days and larvae soon after, but this is highly variable. As with Apis mellifera, we found evidence of unequal reproductive success among queenless workers of A. florea. In the two colonies that reared males to pupation and which we studied with microsatellites, some subfamilies had much higher proportions of workers with activated ovaries than others. The significance of absconding and internest reproductive parasitism to the alternative reproductive strategies of queenless A. florea workers is discussed.
more …
By
Ashburner, Michael; Kyriacou, Charalambos P
The honey bee Apis mellifera displays the most complex behavior of any insect. This, and its utility to humans, makes it a fascinating object of study for biologists. Such studies are now further enabled by the release of the honey-bee genome sequence.
more …
-